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Numerical simulation of protoplanetary vortices

By H. Lin, J.A. Barranco † AND P.S. Marcus ‡

1. Introduction

The fluid dynamics within a protoplanetary disk has been attracting the attention of
many researchers for a few decades. Previous works include, to list only a few among
many others, the well-known α-prescription of Shakura & Sunyaev (1973), the convective
and instability study of Stone & Balbus (1996) and Hawley et al. (1999), the Rossby wave
approach of Lovelace et al. (1999), as well as a recent work by Klahr & Bodenheimer
(2003), which attempted to identify turbulent flow within the disk. The disk is commonly
understood to be a thin gas disk rotating around a central star with differential rota-
tion (the Keplerian velocity), and the central quest remains as how the flow behavior
deviates (albeit by a small amount) from a strong balance established between gravi-
tational and centrifugal forces, transfers mass and momentum inward, and eventually
forms planetesimals and planets.

In earlier works (Barranco & Marcus 2000; Barranco et al. 2000; Lin et al. 2000) we
have briefly described the possible physical processes involved in the disk; we have pro-
posed the existence of long-lasting, coherent vortices as an efficient agent for mass and
momentum transport. In particular, Barranco et al. (2000) provided a general mathe-
matical framework that is suitable for the asymptotic regime of the disk; Barranco &
Marcus (2000) addressed a proposed vortex-dust interaction mechanism which might
lead to planetesimal formation; and Lin et al. (2002), as inspired by general geophysi-
cal vortex dynamics, proposed basic mechanisms by which vortices can transport mass
and angular momentum. The current work follows up on our previous effort. We shall
focus on the detailed numerical implementation of our problem. We have developed a
parallel, pseudo-spectral code to simulate the full three-dimensional vortex dynamics in
a stably-stratified, differentially rotating frame, which represents the environment of the
disk. Our simulation is validated with full diagnostics and comparisons, and we present
our results on a family of three-dimensional, coherent equilibrium vortices.

2. Governing equations

Scaling issues have been discussed in both Barranco et al. (2000) and Lin et al. (2002),
and shall not be repeated. Here we simply list the governing equations that we propose
to solve numerically, namely

∂ρ̄v

∂t
+ ρ̄(v · ∇v) = −2ρ̄Ωoz× (v − v̄)−∇p̃− ρ̃Ω2ozz, (2.1)

∇ · (ρ̄v) = 0, (2.2)

∂T

∂t
+ v · ∇T = −(γ − 1)To

(

1 +
p̃

p̄

)

vzz

H2o
−

T

τrad(z)
, (2.3)
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p̃

p̄
=
ρ̃

ρ̄
+

T̃

To
. (2.4)

Here the equations are written in a rotating frame with an angular velocity Ωo, x is the
streamwise (φ) direction, y is the radial (r) direction, z is the direction about which the
frame is rotating, and z is its corresponding unit vector. In our notation system ρ̄, p̄, To

and v̄ denote the base state density, pressure, temperature and velocity, respectively, and
their forms will be given shortly. The tilde quantities ρ̃ and p̃ denote the deviations of
density and pressure from the base states, respectively, and γ is the ratio of specific heats.
Finally Ho is the scale hight of the disk and τrad is a radiation time scale. Compared
with the governing equations (4.1-4.4) of Lin et al. (2002), we have further expanded
the energy equation making use of the anelastic continuity equation (2.2); we have also
linearized the equation of state to obtain equation (2.4) which is consistent with our
current low-Mach number asymptotic regime.

We nondimensionalize equations (2.1-2.4) with the following scales:

[L] = Ho, [v] = cs, [t] =
[L]

[v]
=

1

Ωo
,

[ρ] = ρo, [p] = ρoc
2
s = po, [T ] = To,

where cs is the speed of sound, ρo is a characteristic density, and To is the characteristic
(base) temperature. The resulted dimensionless equations are

∂ρ̄v

∂t
= −ρ̄(v · ∇)v − 2ρ̄z× (v − v̄)−∇p̃− ρ̃zz, (2.5)

∇ · (ρ̄v) = 0, (2.6)

∂T

∂t
= −v · ∇T − (γ − 1)

(

1 +
p̃

p̄

)

vzz −
T

τrad(z)
, (2.7)

p̃ = ρ̃+ ρ̄T̃ . (2.8)

The base states, as discussed in Lin et al. (2002), are given (in dimensionless form) as:

p̄ = ρ̄ = ρ̄o(y)exp

(

−
z2

2

)

, (2.9)

v̄ =
3

2
yx, (2.10)

where ρ̄o(y) represents the radial variation of the base density, and x is the unit vector in
the x direction. The dimensionless base temperature, which is assumed to be constant,
simply becomes To = 1. For the radiation time τrad, we currently assume the following
dimensionless form,

τrad(z) = τoexp
(

−z2
)

.

We set τo to be approximately 106 times that of the orbital period (denoted τorb). When
such a value is assumed there is almost no radiative dissipation at the midplane, and
the radiation time scale is comparable to the orbital period close to the upper and lower
boundaries of the disk. The radiation scheme captures only the long term dissipative
behavior of the disk, and has a negligible effect on dynamics that have time scales com-
parable with orbital periods.

Equations (2.5-2.8), together with appropriate boundary conditions, are the set of
equations we solve numerically.
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3. Numerical scheme

Before presenting in detail the numerical algorithm, it is appropriate to address a few
of the special challenges involved in the system we are trying to solve. First, we have
a base shear flow in a rotating frame as indicated by equation (2.10). For this kind of
problem it is natural to think about a sliding-box formulation, as it has been implemented
by Rogallo (1981) and Hawley et al. (1999). Two of the current authors (J.A.B. and
P.S.M.) have also developed a similar algorithm to solve the system of equations (2.5-
2.8) using the sliding-box methodology. In this sliding-box formulation, flow in the radial
direction is artificially periodic after subtraction of the convection ensued from the base
shear flow, and the vertical direction is represented in Chebyshev series to capture the
non-periodic buoyancy (gravity) force. Nonetheless, because in the current code we aim
to represent a non-periodic radial thermodynamic (potential-vorticity) background (see
discussions in Lin et al. (2002)), we can no longer assume the artificial periodicity in y,
and functions in this direction should be instead represented in Chebyshev series. This
complication forces us to assume an artificial periodicity in the vertical direction under
the current framework of a Fourier-Fourier-Chebyshev representation, and we shall have
more discussions regarding this point later. Secondly, we account for density variation
(albeit with a simplified form) via the anelastic continuity equation (2.6), and capture the
stably-stratified physics through a vertically decaying density ρ̄, a temperature (energy)
evolution equation (2.7), and a buoyancy (gravity) force term in the momentum equation
(2.5). Thirdly, because the base density has the fast-decaying form of equation (2.9) (e.g.
at z = ±3Ho, the base density decays to only 1% of its value at the midplane), it
should be carefully treated to avoid numerical instability. Finally, the coherent vortices
we are trying to identify assumes full three-dimensional structures for reasons discussed
in Barranco et al. (2000).

We solve equations (2.5-2.8) with a pseudo-spectral scheme. We represent functions in
the x and z direction with Fourier series, and functions in the y direction by Chebyshev
series. Because of the artificial periodicity in the z direction, we have to replace the
variable z in the buoyancy force term ρ̃z with a new periodic function z∗ that equals z
for most of the domain, but comes back to zero to enforce periodicity toward the upper
and lower boundaries (see Figure 1). Because the base density ρ̄ (and hence momentum,
energy, etc.) becomes very small where z∗ has the largest deviation from z, and because
our vortices have a compact structure around z = 0, the influence of this replacement of
z with z∗ is assumed to be minimal.

For time integration we adopt a Leap-Frog scheme for calculation of the nonlinear
terms. Our algorithm can be compactly written as

ûM+1 = uM−1 + 2∆t(nM − ρ̃Mz∗z), (3.1)

∇2p̃M = ∇ · ûM+1,

[

∂p̃M

∂y
=

1

2∆t
ûM+1y

]

y=±1

, (3.2)

uM+1 = ûM+1 − 2∆t∇p̃M , (3.3)

TM+1 = (TM−1 + 2∆tnT )e
−2∆t/τrad , (3.4)

where

u ≡ ρ̄v (3.5)

is momentum and our working variable, the superscript M denotes quantities at the M th

time step, n is the sum of the nonlinear terms on the RHS of equation (2.5) excluding the
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Figure 1. The artificially enforced periodic function z∗ (solid), compared with the original
linear function z (dash-dotted). In this plot the vertical domain extends from −3Ho to 3Ho; the
value of the base density ρ̄ at the upper and lower boundaries (z ≈ ±3Ho) is about 1% of its
value at the midplane (z = 0). Our vortex structure, as we shall present later, is compact in z
and primarily assumes the domain from −Ho to Ho.

buoyancy force, and nT is the sum of the nonlinear terms on the RHS of equation (2.7)
excluding the radiation term. The Helmholtz equation (3.2) is inverted to solve for pres-
sure which consequently enforces the divergence free condition (2.6) at the (M+1)th step.
In our code we have also implemented a τ -method that ensures equation (2.6) is satisfied
for all Chebyshev modes. We found that the latter method improves numerical stability.
For boundary conditions, we are currently implementing no-flow condition at y = ±1
(which is enforced by the pressure boundary condition when solving for p̃M in (3.2)).
The advantage of doing this is to contain our flow and enforce conservation laws within
the computational domain. Finally we apply a 6th order hyperviscosity/hyperdiffusion
on both the momentum and energy equations to ensure numerical stability.

Note that we have not adopted the more commonly practiced Adams-Bashforth (for
nonlinear terms) and Crank-Nicolson (for pressure) time-integration scheme. This is be-
cause the current Leap-Frog scheme has better performance in terms of avoiding the
instability caused by the large density variation of ρ̄ in the vertical direction. Note also
that when inverting the Helmholtz problem (3.2) for p̃M , the ûM+1 term on the RHS
contains a buoyancy term ρ̃Mz∗, in which the density ρ̃M is related to the pressure p̃M

via the equation of state (2.8). This coupling problem is resolved by an iterative method.
We use ρ̃M−1 as the initial value ρ̃M0 to enter the iteration on the RHS of equation (3.2).
Once the pressure p̃M0 is obtained by inverting the Helmholtz problem, it is used to obtain
a new density function using

ρ̃Mi+1 = p̃Mi − ρ̄T̃M , (3.6)

which subsequently enters the Helmholtz solver as the new density. we found that ∼ 5
times of this procedure give excellent convergence at an acceptable computational cost.

To improve the speed of the code we have also implemented a “faster” variation of our
algorithm. This implementation is based on the following consideration. We can rewrite
the momentum and energy equations as

∂u

∂t
= −σy

∂u

∂x
+ n−∇p̃− ρ̃z∗z, (3.7)
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∂T

∂t
= −σy

∂T

∂x
+ nT −

T

τrad
, (3.8)

where σ = 3
2
is the shear rate of the base flow, and n and nT are the same as previ-

ously defined. In this case, however, we further exclude the base-shear convection terms.
The base shear flow poses a major constraint on the size of the time-step if calculated
explicitly, whereas the flow structure we are interested in is only a small deviation from
this base flow (Barranco et al. 2000). We therefore separate the base convective terms
−σy ∂u

∂x and −σy ∂T
∂x and treat them analytically. Our new algorithm, in which the base

convection is represented in terms of waves, is written

ûM+1 = e−2ic∆tuM−1 + e−ic∆t2∆t(nM −∇p̃M−1 − ρ̃M−1z∗z), (3.9)

uM+1 = ûM+1 − 2∆t[∇(p̃M − p̃M−1) + (ρ̃M − ρ̃M−1)z∗z], (3.10)

TM+1 = (e−2ic∆tTM−1 + e−ic∆t2∆tnMT )e−2∆t/τrad . (3.11)

Here c ≡ kxσy, that is, these exponents are applied for each wave number kx in the
x direction and at each point y in the transverse domain. This formula assumes the
form of a semi-implicit, predictor-corrector algorithm of second-order accuracy. Again a
Helmholtz problem is solved to obtain pressure and enforce continuity equation, and an
iterative method is used to simultaneous obtain p̃M and ρ̃M . In this new algorithm our
effective flow number is calculated from

|ṽ| = |v − v̄| ¿ |v̄|.

Because the maximum value of ṽ is typically only 1/5 that of v̄, we can use significantly
larger time steps.

Our algorithms are implemented for parallel computation using MPI, with a com-
munication algorithm for FFT provided by Dr. Alan Wray. We test and run our code
on the SGI Origin 2000 clusters at NASA Ames. We have performed diagnostics such
as conservation of mass, momentum and energy. Aside from the results that we shall
present below, we have also tested finer resolutions for convergence. We have followed
the standard diagnostic procedures and the details shall not be presented here.

4. Results

We now present our computational results for three dimensional vortices. We shall
be seeking the existence of three-dimensional, coherent vortices which can survive in an
environment such as that of the protoplanetary disk. We will call these vortices henceforth
“equilibrium” vortices.

Because we seek vortices that are in dynamic equilibrium with their environment,
a natural approach would be to generalize the idea of the well-known Moore-Saffman
vortices (see, e.g. Saffman (1992)) to three dimensions. In Lin et al. (2002) we have
discussed columnar Moore-Saffman vortices, which are quasi-two-dimensional objects. In
the following we present results for three-dimensional vortices, which resemble Moore-
Saffman vortices in the horizontal planes, but have compact support in the vertical
direction. Before we start it is useful to list the vorticity-aspect-ratio relation given by
Moore-Saffman theory:

ω̃z

σ
= λ

λ+ 1

λ− 1
, (4.1)

where ω̃z is the strength of the constant vorticity patch superimposed on the shear, and
λ < 1 is the ratio of the semi-axes of the elliptic patch.
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Figure 2. Three-dimensional vortex structure in the absence of shear. Here we show the iso-
surface at the value ω̃z = −1, and at the time t = 20 τorb. Our computational resolution is
128× 64× 96 on a computational domain of 8× 2× 6 (not entirely shown in this graph).

4.1. Vortices without shear

We first present a relatively simple case in which we set the shear to be zero, that is,
σ = 0. This case will facilitate a comparison with our later results where we see the
effects of a strong shear on the vortex. As the initial condition, we specify a vorticity
function as

ω̃z =

{

ωoexp
(

− z2

2

)

,
√

x2 + y2 ≤ ro

0,
√

x2 + y2 > ro
, (4.2)

where ωo = −2.25, ro = 0.25 is the radius of the circular patches (note that from (4.1)
λ→ 1 when σ → 0), and the Gaussian distribution renders the vortex compact in z. We
have set ρ̃ to give an initial hydrostatic balance in the vertical direction.

The vortex goes through a brief (on the scale of turn-around time) and slight adjust-
ment and then evolves into an equilibrium shape that is coherent for many (we have
tested up to 120) turn-around times. See Figure 2.

4.2. Vortices in a Keplerian shear

Similar to the case without shear, we start with an initial guess that is close enough to
the equilibrium state. We specify our initial vorticity function as

ω̃z =

{

ωoexp
(

− z2

2

)

, x2/a2 + y2/b2 ≤ 1

0,
√

x2/a2 + y2/b2 > 1
, (4.3)

where ωo = −0.625, and the semi-axes are specified as a = 0.25 and b = 1.0. At the
midplane z = 0, the elliptical vortex patch satisfied exactly the Moore-Saffman relation
(4.1), and again the vorticity strength decreases with a Gaussian distribution away from
the midplane. Similarly we have specified the initial ρ̃ such that the flow is in hydrostatic
balance. Note that we have specified a lower value for ωo. This is because J.A.B. and
P.S.M. found that lower vorticity strength (albeit still of a moderate Rossby number)
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Figure 3. Elongated three-dimensional vortex structure in a Keplerian shear (σ = 1.5). Here we
show the isosurface at the value of ω̃z = −0.55, and at the time t = 20 τorb. Our computational
resolution is 128× 64× 96 on a computational domain of 8× 2× 6 (not entirely shown in this
graph).
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Figure 4. Contour plot of same vortex structure as shown in Figure 3 at the midplane z = 0. In
this plot darker color designate the more negative values of ω̃z, and the black spot at the center
is our equilibrium vortex patch. At the midplane the vortex is almost exactly Moore-Saffman.

induces fewer thermodynamic oscillations in the vertical direction and therefore aids
coherence.

The resulting equilibrium vortex (after a few turn-around times from the initialization)
is shown in both Figures 3 and 4. In Figure 3 we show an isosurface plot of the vertical
vorticity ω̃z. When compared with Figure 2, the vortex is stretched by the shear and has
a elongated shape in the horizontal directions (Figure 4).

Figure 5 illustrates the evolution of the vertical vorticity profile ω̃z in time. The vor-
ticity quickly adjusts, on turn-around-time scales, to an equilibrium distribution that is
maintained for a much longer period. (We have tested up to 60 turn-around times in
this case.) Note that, close to the midplane, the vorticity goes through small-amplitude
oscillations. This is because at z = 0 there is no gravitation and the flow is at its least
stably stratified.

Finally we compare our results (henceforth denoted as “current”) with those from a
sliding-box implementation (denoted “sliding-box”) that has been developed by J.A.B.
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Figure 5. Time evolution of vertical vorticity profile ω̃z(z) for vortices shown in Figure 3 and 4.
The vorticity starts with a Gaussian distribution (solid), goes through quick adjustment (dash)
and evolves into an equilibrium shape (dot-dash and line-circle).

and P.S.M. The most significant difference between these two codes lies in the boundary
conditions. For the streamwise x direction, a natural periodicity is assumed for both
methods. For the other two (transverse and vertical) directions, our current implemen-
tation has an artificial periodicity in z and enforces a no-flow condition in y, whereas the
sliding box formulation assumes a shear-convected periodicity in y and a no-flow condi-
tion in z. The agreement between these two implementations is an important validation
of the results from both.

In Figure 6 we show the comparison of the equilibrium vorticity ω̃z along the three
major axes. We initialize with the same vorticity distribution that is given by equation
(4.3). The velocity, pressure and density functions are obtained satisfying both the hy-
drostatic balance and the boundary conditions in each of the implementations. The flows
then evolve and we compare our results after 20 orbital periods. The results indicate
excellent agreement between the methods.

The most significant difference lies in the vorticity distribution along the z axis. This
difference can be better illustrated by a contour plot of ω̃z along the x = 0 slice (Figure
7). The difference in ω̃z(0, 0, z) is primarily manifested as a smaller vortex size in the
current method. Nonetheless, the equilibrium shapes of these vortices agree well with
each other, and, most strikingly, the black-and-white stripe patterns emanating away
from the vortices are almost exactly reproduced in both of the methods, even though
the boundary conditions are very different. These patterns are speculated to be gravity
waves. Both the gravity waves and the difference in vortex size require more detailed
study in the future.

5. Future Work

In the present paper we have shown the numerical implementation, as well as our re-
sults on three-dimensional, equilibrium vortices. We have compared and validated our
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Figure 6. Comparison of equilibrium vorticity distribution against a sliding-box calculation
along the three major axes of the vortex structure.
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Figure 7. Comparison of equilibrium vorticity distribution against a sliding-box calculation.
Here we plot the function ω̃z(0, y, z), and the darker color correspond to the more negative
values. The very black patches in the middle are our equilibrium vortex structures. Result from
the current method is shown in the left graph, and that from the sliding-box method is shown
to the right.

results with an alternative, sliding-box method. A few of the issues that we shall be
immediately looking into next are as follows. First, even though we have identified a
family of equilibrium vortices from one particular form of initialization, we should also
seek other possible forms of equilibrium vortices. For example, we have tried the combi-
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nation of different decaying exponents in (4.3) and different vorticity strength ωo, and
found equilibrium vortices under certain conditions. (This work is still in progress and
is not presented here.) Second, we have preferred a no-flow condition in the y direction,
primarily because of its advantage in diagnosing the conservation laws. This more rigid
boundary condition should be relaxed or modified in the future to better reflect the
physics of the disk. Finally, the purpose of the current numerical implementation has
been to overcome the limitation of the sliding-box formulation, and eventually simulate
a radial (y) thermodynamic (potential-vorticity) background. Our ultimate goal would
be to generate coherent vortices from such a (baroclinic) background, as well to as to
study the dynamical migration and deformation of such vortices; with these achieved we
will be ready to address their relevance to the greater problem of angular momentum
and mass transport within protoplanetary disks.
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